Innings2
Powered by Innings 2

Glossary

Select one of the keywords on the left…

Chapter 8: Algebraic Expressions and Identities > Exercise 8.3

Exercise 8.3

1. Carry out the multiplication of the expressions in each of the following pairs.

Instructions

(i) 4p, q + r : 4p(q + r) = + pr
(ii) ab, a – b : ab(a – b) = +
(iii) a + b, 7a2b2 : a+b7a2b2 = +
(iv) a29, 4a : a294a = +
(v) pq + qr + rp, 0 : (pq + qr + rp) × 0 =

2. Complete the table.

S.No.First expressionSecond expressionProduct
(i)ab+c+d
(ii)x + y – 55xy
(iii)p6p27p+5
(iv)4p2q2p2q2
(v)a+b+cabc

3. Find the product.

Instructions

(i) a2×2a22×4a26 = 2×4a2×a22×a26 = 8×a2+22+26 =
(ii) 23xy × 910x2y2 = 23×910 (x×x2×y×y2) =
(iii) 103pq3 × 65p3q = (103×65) (p×p3×q3×q) =
(iv) x×x2×x3×x4 = x1+2+3+4 =

Instructions

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x = 12.

3x4x5+3 = 3x4x3x5+3 = x2x +
(i) Putting x = 3 in the equation: 12x215x+3 = 1232153+3 = + =
(ii) Putting x =12 in the equation: 12x215x+3= 121221512+3 = 12 x + 3
= 152 + 3 =

(b) Simplify aa2+a+1+5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.

aa2+a+1+5 = axa2+axa+ax1+5 = + + +
(i) putting a = 0 in the equation: 03+02+0+5=
(ii) putting a = 1 in the equation: 13+12+1+5 =
(iii) Putting a = -1 in the equation: 13+12+1+5 =

Instructions

5. (a) Add: p (p – q), q (q – r) and r (r – p)

p(p – q) + q(q – r) + r(r – p) = + q2 + +
=

(b) Add: 2x (z – x – y) and 2y (z – y – x)

2x(z – x – y) + 2y(z – y – x) = + x2 + xy + yz + y2 –2xy
= xz + xy + yz + x2 y2

(c) Subtract: 3l(l – 4m + 5n) from 4l(10n – 3m + 2l)

4l10n3m+2l3ll4m+5n = ln – lm + l2 – (l2lm + ln)
= 40ln12lm+8l23l2+12lm15ln = ln + l2

(d) Subtract: 3a(a + b + c) – 2b(a – b + c) from 4c(–a + b + c)

4c(–a+b+c) – (3a(a+b+c) – 2b(a–b+c)) = 4ac+4bc+4c23a2+3ab+3ac2ab2b2+2bc
= ac + bc + c2 – (a2 + ab + ac + ab + b2 + bc)
= 4ac+4bc+4c2 + a2 + ab + ac + ab + b2 + bc
= ac + bc + c2a2 + ab – b2