Moderate Level Worksheet Questions
Part A: Subjective Questions
Note: Answer each question with steps and explanation. Write down the answers on sheet and submit to the school subject teacher.
(1) Name the minimum number of measurements required to construct a unique quadrilateral.
Awesome! 5 measurements are needed for a unique quadrilateral.
(2) Which instrument is used to measure and construct angles accurately?
Great job! A protractor measures and constructs angles accurately.
(3) Can a quadrilateral be constructed if the sum of three sides is less than the fourth side? Why?
Perfect! No, because it violates the quadrilateral inequality.
(4) What is the total sum of interior angles of any quadrilateral?
Excellent! All quadrilaterals have interior angles summing to 360°.
(5) Name the quadrilateral that can be constructed if two diagonals and three sides are given.
Super! Any quadrilateral can be constructed with this information.
(6) Mention one condition necessary for constructing a parallelogram.
That's correct! Two adjacent sides and one angle are sufficient.
(7) Can we construct a quadrilateral with only three angles and one side known?
Well done! This information is insufficient for construction.
(8) How many diagonals does a quadrilateral have?
Brilliant! Every quadrilateral has exactly 2 diagonals.
(9) In a rhombus, the diagonals bisect each other at what angle?
Brilliant! Every quadrilateral has exactly 2 diagonals.
(10) What kind of triangle is formed when two adjacent sides and the included angle are known?
Perfect! This gives us a SAS triangle to start construction.
Note: Answer each question with steps and explanation. Write down the answers on sheet and submit to the school subject teacher.
(1) Can you construct a quadrilateral ABCD if AB = 4 cm, BC = 5 cm, CD = 6 cm, DA = 7 cm, and AC = 9 cm? Justify.
(2) Explain the steps to construct a quadrilateral when two diagonals and three sides are known.
(3) Describe how to construct a quadrilateral when two adjacent sides and three angles are given.
(4) In quadrilateral ABCD, if AB = 5 cm, BC = 4 cm, CD = 6 cm, DA = 7 cm and AC = 9 cm, explain how to start the construction.
(5) Why does construction fail when the sum of any three sides of a quadrilateral is less than the fourth side?
Note: Answer each question with steps and explanation. Write down the answers on sheet and submit to the school subject teacher.
(1) Construct a quadrilateral ABCD where AB = 5.5 cm, BC = 6 cm, CD = 4.5 cm, DA = 5 cm and diagonal AC = 7 cm.
(2) Construct quadrilateral PQRS such that PQ = 6 cm, QR = 5.5 cm, RS = 4 cm, PS = 6.5 cm and diagonal PR = 7 cm. Write the steps clearly and label all points.
(3) Construct a quadrilateral ABCD with AB = 5 cm, BC = 4.5 cm, ∠B = 75°, ∠C = 100°, ∠D = 95°, and AD = 6 cm. Show all steps and reason out your construction.
(4) Draw a quadrilateral PQRS such that PS = 6 cm, ∠P = 60°, ∠S = 90°, PQ = 5 cm, QR = 4 cm, and RS = 5.5 cm. Clearly mention the steps involved.
Part Objective Questions
For each question, click on the correct answer:
1. A quadrilateral with two pairs of adjacent sides equal is called a:
(a) Parallelogram (b) Rhombus (c) Kite (d) Trapezium
Excellent! A kite has two pairs of adjacent sides equal.
2. To construct a quadrilateral with two diagonals and three sides, we must:
(a) Draw diagonals first (b) Draw all sides first (c) Know all angles (d) Measure only diagonals
Perfect! When constructing with diagonals and sides, draw diagonals first.
3. A quadrilateral with all sides equal and diagonals not equal is a:
(a) Square (b) Rectangle (c) Rhombus (d) Trapezium
Great! A rhombus has all sides equal but diagonals are not equal.
4. The tool that is not used in construction of quadrilaterals is:
(a) Compass (b) Divider (c) Protractor (d) Calculator
Fantastic! Calculator is not a construction tool - we use compass, divider, and protractor.
5. In a quadrilateral ABCD, the diagonals intersect at point O. If AO = OC and BO = OD, then ABCD is a:
(a) Trapezium (b) Parallelogram (c) Square (d) Rectangle
Excellent! When diagonals bisect each other, the quadrilateral is a parallelogram.