Exercise 10.1
1. Evaluate:
(i) 3 − 2 = =
(ii) − 4 − 2 = =
(iii) 1 2 − 5 = =
We have found all the answers.
2. Simplify and express the result in power notation with positive exponent:
(i) − 4 5 ÷ − 4 8
= − 4 5 − 4 8 = =
(ii) 1 2 3 2
= 1 2 2 3 2 = =
(iii) − 3 4 × 5 3 4
= − 1 4 × 3 4 × 5 4 3 4 = = × =
(iv) 3 − 7 ÷ 3 − 10 × 3 − 5
= 3 − 7 3 − 10 × 3 − 5 = × 3 − 5 = × 3 − 5
= × 3 − 5 = = =
(v) 2 − 3 × − 7 − 3 = = =
3. Find the value of:
(i) 3 0 + 4 − 1 × 2 2 = + × 2 2
= × 2 2 = × 2 2
= 5 × 2 2 − 2 = × =
(ii) 2 − 1 × 4 − 1 ÷ 2 − 2
= ( × ) ÷
= 1 2 × 1 2 2 ÷ 1/4 = ÷ 1 4
= × =
(iii) 1 2 − 2 + 1 3 − 2 + 1 4 − 2
= + +
= + +
= + + = + + =
(iv) 3 − 1 + 4 − 1 + 5 − 1 0 =
(v) − 2 3 − 2 2 = = =
4. Evaluate:
(i) 8 − 1 × 5 3 2 − 4
We can write: 8 =
= 2 3 − 1 × 5 3 2 − 4 = ×
= × =
(ii) 5 − 1 × 2 − 1 × 6 − 1
= × ×
= 1 10 × 1 6 =
5. Find the value of m for which
Comparing exponents on both sides, we get: m + =
m = - =
6. Evaluate:
(i) 1 3 − 1 − 1 4 − 1 − 1
= 3 1 1 − 4 1 1 − 1 = =
(ii) 5 8 − 7 × 8 5 − 4 = 5 − 7 8 − 7 × 8 − 4 5 − 4
= ×
= × = =
7. Simplify:
(i) 25 × t − 4 5 − 3 × 10 × t − 8 (t ≠ 0)
We can express: 25 = and 10 = ×
= 5 2 × t − 4 5 − 3 × 5 × 2 × t − 8 = 5 2 − − 3 − 1 × t − 4 − − 8 2 = =
(ii) 3 − 5 × 10 − 5 × 125 5 − 7 × 6 − 5
We can express: 125 = and 10 − 5 = ×
= 3 − 5 × 2 − 5 × 5 − 5 × 5 3 5 − 7 × 2 − 5 × 3 − 5
= 3 − 5 − − 5 × 2 − 5 − − 5 × 5 − 2 − − 7 = ( × × ) = × × =