Innings2
Powered by Innings 2

Glossary

Select one of the keywords on the left…

Chapter 12: Factorisation > Exercise 12.2

Exercise 12.2

1. Factorise the following expressions:

(i) a2 + 10a + 25

Solution:

a2 + 10a + 25 = + 2()() +

=

(ii) l2 – 16l + 64

Solution:

l2 - 16l + 64 = - 2()() + =

(iii) 36x2 + 96xy + 64y2

Solution:

36x2 + 96xy + 64y2 = () + 2()() + () = 6x+8y2 = 3x+4y2

(iv) 25x2 + 9y2 – 30xy

Solution:

25x2 + 9y2 – 30xy = ()² - 2()() + () =

(v) 25m2 – 40mn + 16n2

Solution:

25m2 – 40mn + 16n2 = () - 2()() + () =

(vi) 81x2 – 198xy + 121y2

Solution:

81x2 – 198xy + 121y2 = () - 2()() + () =

(vii) x+y2 – 4xy

Solution:

x+y2 - 4xy = + 2x + - 4xy = x2 - + y2 =

(viii) l4 + 4l2m2 + 4m4

Solution:

l4 + 4l2m2 + 4m4 = () + 2l22m2 + () =

2. Factorise the following:

(i) x2 – 36

Solution:

x2 – 36 = x2 - = ()(x + 6)

(ii) 49x225y2

Solution:

49x225y2 = () - () = ( )(7x + 5y)

(iii) m2 – 121

Solution:

m2 – 121 = m2 - = (m - 11)( )

(iv) 81 – 64x2

Solution:

81 – 64x2 = - () = (9 - )( + 8x)

(v) x2y2 – 64

Solution:

x2y2 - 64 = - = (xy - 8)(xy + 8) = ( - 8)(xy + )

(vi) 6x2 – 54

Solution:

6x2 - 54 = (x2 - ) = 6(x2 - ) = 6( )(x + 3)

(vii) x2 – 81

Solution:

x2 - 81 = x2 - =

(viii) 2x – 32x5

Solution:

2x - 32x5 = (1 - ) = 2x(1 - ()) = 2x( - )(1 + 4x2)

(ix) 81x4121x2

Solution:

81x4121x2 = (81x² - 121) = x2(() - ) =

(x) p22pq+q2r2

Solution:

p22pq+q2r2 = () - r2 = ()(p - q + r)

(xi) x+y2xy2

Solution:

x+y2xy2 = x2+2xy+y2 - x22xy+y2 = x2 + 2xy + y2 - x2 + 2xy - y2 =

3. Factorise the expressions:

(i) lx2 + mx

Solution:

lx2 + mx = ( + )

(ii) 7y2 + 35z2

Solution:

7y2 + 35z2 = ( + z2)

(iii) 3x4+6x3y+9x2z

Solution:

3x4+6x3y+9x2z = 3x2( + + )

(iv) x2 – ax – bx + ab

Solution:

x2 - ax - bx + ab = (x - a) - (x - a) = (x - a)()

(v) 3ax – 6ay – 8by + 4bx

Solution:

3ax - 6ay - 8by + 4bx = (x - 2y) + (x - 2y) = (x - 2y)()

(vi) mn + m + n + 1

Solution:

mn + m + n + 1 = (n + 1) + (n + 1) = (n + 1)(m + 1)

(vii) 6ab – b2 + 12ac – 2bc

Solution:

6ab - b2 + 12ac - 2bc = (6a - b) + c(6a - b)

= (6a - b)( + )

(viii) p2qpr2 – pq + r2

Solution:

p2qpr2 – pq + r2 = (pq - r2) - (pq - r2) = (pq - r2)(p - 1)

(ix) x(y+z) – 5(y+z)

Solution:

x(y + z) - 5(y + z)

= (y + z)()

4. Factorise the following:

(i) x4y4

Solution:

x4y4 = () - () = (x2 - y2)(x2 + y2) = ()(x + y)(x2 + y2)

(ii) a4b+c4

Solution:

a4b+c4 = - (a2 + b+c2)

= (a - (b+c))(a + (b+c))(a2 + ( + + ))

= (a - b - c)(a + b + c)(a2 + b2 + 2bc + c2)

(iii) l2mn2

Solution:

l2mn2 =

=

(iv) 49x2 – 16/25

Solution:

49x2 – 16/25 = - ()

= ( - )( + )

(v) x42x2y2+y4

Solution:

x42x2y2+y4 = () - 2()() + ()

xyx+y2

=

(vi) 4a+b29ab2

Solution:

4a+b29ab2 = (a+b2) - (ab2)

= (2(a+b) - 3(a-b))(2(a+b) + 3(a-b)) = (2a + 2b - 3a + 3b)(2a + 2b + 3a - 3b)

= =

5. Factorise the following expressions:

(i) a2 + 10a + 24

Solution:

a2 + 10a + 24 = a2 + + 4a + 24

= a(a + 6) + 4(a + 6) = (a + 6)( + )

(ii) x2 + 9x + 18

Solution:

x2 + 9x + 18 = x2 + + 3x + 18

= (x + 6) + (x + 6)

=

(iii) p2 – 10p + 21

Solution:

p2 - 10p + 21 = p2 - - 3p + 21

= (p - 7) - (p - 7)

=

(iv) x2 – 4x – 32

Solution:

x2 – 4x – 32 = x2 - + 4x - 32

= (x - 8) + (x - 8)

=