Innings2
Powered by Innings 2

Glossary

Select one of the keywords on the left…

Chapter 12: Factorisation > Exercise 12.3

Exercise 12.3

1. Carry out the following divisions:

(i) 48a3 by 6a

Solution:

48a36a = 486a3a =

(ii) 14x3 by 42x2

Solution:

14x342x2 = 1442x3x2

= x =

(iii) 72a3b4c5 by 8ab2c3

Solution:

72a3b4c58ab2c3 = (728)(a³/a)(b⁴/b²)(c⁵/c³)

=

(iv) 11xy2z3 by 55xyz

Solution:

11xy2z355xyz

= (1155)(x/x)(y2y)(z3z)

= ()yz2 =

(v) 54l4m3n2 by 9l2m2n2

Solution:

54l4m3n29l2m2n2

=

2. Divide the given polynomial by the given monomial:

(i) 3x22x ÷ x

Solution:

3x22xx = 3x2x - 2xx

= -

(ii) (5a3b7ab3) ÷ ab

Solution:

5a3b7ab3ab = 5a3bab - 7ab3ab

= a2 - b2

(iii) (25x515x4) ÷ 5x3

Solution:

25x515x45x3 = 25x55x3 - 15x45x3

= x2 -

(iv) (4l56l4 + 8l3) ÷ 2l2

Solution:

4l56l4+8l32l2 = 4l52l2 - 6l42l2 + 8l32l2

= - +

(v) 15(a3b2c2a2b3c2 + a2b2c3) ÷ 3abc

Solution:

15a3b2c2a2b3c2+a2b2c33abc = (a2bcab2c+abc2)

= 5

(vi) (3p39p2q6pq2) ÷ (–3p)

Solution:

3p39p2q6pq23p = + +

(vii) 23a2b2c2+43ab2c2 ÷ 12abc

Solution:

23a2b2c2+43ab2c212abc

= () abc + bc

=

3. Workout the following divisions:

(i) (49x – 63) ÷ 7

Solution:

49x637 = 77x97

= -

(ii) 12x(8x – 20) ÷ 4(2x – 5)

Solution:

12x8x2042x5 = 12x×42x542x5

=

(iii) 11a3b37c35 ÷ 3a2b2c5

Solution:

11a3b37c353a2b2c5

= ab

(iv) 54lmn(l + m)(m + n)(n + l) ÷ 81mn(l + m)(n + l)

Solution:

54lmnl+mm+nn+l81mnl+mn+l

= () (m+n)

(v) 36(x + 4)(x2 + 7x + 10) ÷ 9(x + 4)

Solution:

36x+4x2+7x+109x+4 = (x2 + 7x + 10)

= 4(+)(x+5)

(vi) a(a + 1)(a + 2)(a + 3) ÷ a(a + 3)

Solution:

aa+1a+2a+3aa+3 =

4. Factorize the expressions and divide them as directed:

(i) (x2 + 7x + 12) ÷ (x + 3)

Solution:

x2+7x+12x+3 = x+3x+4x+3

= +

(ii) (x2 – 8x + 12) ÷ (x – 6)

Solution:

x28x+12x6

= (x - 6)()/(x - 6)

=

(iii) (p2 + 5p + 4) ÷ (p + 1)

Solution:

p2+5p+4p+1

= (p + 1)()/(p + 1)

=

(iv) 15aba27a+10 ÷ 3ba2

Solution:

15aba27a+103ba2

= 15ab(a-2)()/3b(a-2)

=

(v) 15lm(2p22q2) ÷ 3l(p + q)

Solution:

15lm(2p22q2)/3l(p + q) = 15lm × 2(2p22q2)/3l(p + q) =

= (p-q)

(vi) 26z332z218 ÷ 13z24z3

Solution:

26z332z21813z24z3

= 32z2184z3

= (16z2 - 9)

= 2z()(4z+3)/(4z-3)

=