Innings2
Powered by Innings 2

Glossary

Select one of the keywords on the left…

Chapter 11: Algebraic Expressions > Exercise 11.1

Exercise 11.1

1. Find the product of the following pairs:

(i) 6, 7k

Solution:

6 × 7k =

(ii) -3l, -2m

Solution:

-3l × -2m =

(iii) 5t2, 3t2

Solution:

5t2 × 3t2 =

(iv) 6n, 3m

Solution:

6n × 3m =

(v) 5p2, -2p

Solution:

5p2 × -2p =

2. Complete the table of the products.

X5x2y23x26xy3y23xy24xy2x2y2
3x
4y
2x2
6xy
2y2
3x2y
2xy2
5x2y2

Solution:

Instruction

3x × 5x = ; 3x × 2y2 = ; 3x× 3x2 = ; 3x × 6xy = ; 3x × 3y2 = ; 3x × 3xy2 = ; 3x × 4xy2 = ; 3x × x2y2 =
4y × 5x = ; 4y × 2y2 = ; 4y × 3x2 = ; 4y × 6xy = ; 4y × 3y2 = ; 4y × 3xy2= ; 4y × 4xy2 = ; 4y × x2y2 =
2x2 × 5x = ; 2x2 × 2y2 = ; 2x2× 3x2 = ; 2x2 × 6xy = ; 2x2 × 3y2 = ; 2x2 × 3xy2= ; 2x2× 4xy2 = ; 2x2 × x2y2 =
6xy × 5x = ; 6xy × 2y2 = ; 6xy × 3x2 = ; 6xy × 6xy = ; 6xy × 3y2 = ; 6xy × 3xy2= ; 6xy × 4xy2 = ; 6xy × x2y2 =
2y2 × 5x = ; 2y2 × 2y2 = ; 2y2 × 3x2 = ; 2y2 × 6xy = ; 2y2 × 3y2 = ; 2y2× 3xy2= ; 2y2 × 4xy2 = ; 2y2 × x2y2 =
3x2y × 5x = ; 3x2y × 2y2 = ; 3x2y × 3x2 = ; 3x2y × 6xy = ; 3x2y × 3y2 = ; 3x2y× 3xy2= ; 3x2y × 4xy2 = ; 3x2y × x2y2 =
2xy2 × 5x = ; 2xy2 × 2y2 = ; 2xy2 × 3x2 = ; 2xy2 × 6xy = ; 2xy2 × 3y2 = ; 2xy2× 3xy2= ; 2xy2 × 4xy2 = ; 2xy2 × x2y2 =
5x2y2 × 5x = ; 5x2y2 × 2y2 = ; 5x2y2 × 3x2 = ; 5x2y2 × 6xy = ; 5x2y2 × 3y2 = ; 5x2y2× 3xy2= ; 5x2y2 × 4xy2 = ; 5x2y2 × x2y2 =

3. Find the volumes of rectangular boxes with given length, breadth and height in the following table.

S.No.LengthBreadthHeightVolume (v) = l × b × h
(i)3x4x25v = 3x × 4x2 × 5 = 60x3
(ii)3a245cv =
(iii)3m4n2m2v =
(iv)6kl3l22k2v =
(v)3pr2qr4pqv =

Solution:

S.No.LengthBreadthHeightVolume (v) = l × b × h
(i)3x4x25v = 3x × 4x2 × 5 = 60x3
(ii)3a245cv = 3a2 × 4 × 5c =
(iii)3m4n2m2v = 3m × 4n × 2m2 =
(iv)6kl3l22k2v = 6kl × 3l2 × 2k2 =
(v)3pr2qr4pqv = 3pr × 2qr × 4pq =

4. Find the product of the following monomials

(i) xy, x2y, xy, x

Solution:

xy × x2y × xy × x =

(ii) a, b, ab, a3b, ab3

Solution:

a × b × ab × a3b × ab3 =

(iii) kl, lm, km, klm

Solution:

kl × lm × km × klm =

(iv) pq, pqr, r

Solution:

pq × pqr × r =

(v) -3a, 4ab, -6c, d

Solution:

-3a × 4ab × -6c × d =

5. If A = xy, B = yz and C = zx, then find ABC = ..........

Solution:

ABC = xy × yz × zx = x1+1 × y1+1 × z1+1 =

6. If P = 4x2, T = 5x and R = 5y, then PTR/100 = ..........

Solution:

PTR/100 = 4x2×5x×5y100 = ()/100

=

7. Write some monomials of your own and find their products.

Solution:

Let's consider the following monomials:

Monomial 1: 2ab2

Monomial 2: 3a2bc

Monomial 3: 4c2

Product = (2ab2) × (3a2bc) × (4c2) = (2 × -3 × 4) × a1+2 × b2+1 × c1+2 =

Therefore, the product of these monomials is 24a3b3c3.