Innings2
Powered by Innings 2

Glossary

Select one of the keywords on the left…

Chapter 11: Algebraic Expressions > Exercise 11.3

Exercise 11.3

1. Multiply the binomials:

(i) 2a-9 and 3a+4

Solution:

(2a - 9)(3a + 4) = 2a(3a + 4) - 9(3a + 4)

= + a - 27a -

= 6a2 - a - 36

(ii) x-2y and 2x-y

Solution:

(x - 2y)(2x - y)

= x(2x - y) - 2y(2x - y)

= - - +

= 2x2 - + 2y2

(iii) kl+lm and k-l

Solution:

(kl + lm)(k - l)

= kl(k - l) + lm(k - l)

= - + -

(iv) m2n2 and m+n

Solution:

(m2n2)(m + n)

= m2(m + n) - n2(m + n)

= + - -

2. Find the product:

(i) (x+y)(2x-5y+3xy)

Solution:

(x + y)(2x - 5y + 3xy)

= x(2x - 5y + 3xy) + y(2x - 5y + 3xy)

= - 5xy + 3xy + - 5y2 +

= 2x2 - 3xy + - 5y2 + 3xy2

(ii) a2b+3cab2a2b

Solution:

a2b+3cab2a2b

= aab2a2b - 2bab2a2b + 3cab2a2b

= - - + + -

= - - + -

(iii) (mn-kl+km)(kl-lm)

Solution:

(mn - kl + km)(kl - lm)

= mn(kl - lm) - kl(kl - lm) + km(kl - lm)

= mnkl - m2ln - + + -

= mnkl - m2ln - k2l2 + kl2m + k2lm - klm2

(iv) p3+q3p5q+6r

Solution:

p3+q3p5q+6r

= p3p5q+6r + q3p5q+6r

= - + + - +

= p4 - 5p3q + 6p3r + pq3 - 5q4 + 6q3r

3. Simplify the following : (x-2y)(y-3x)+(x+y)(x-3y)-(y-3x)(4x-5y)

Solution:

(x - 2y)(y - 3x) + (x + y)(x - 3y) - (y - 3x)(4x - 5y) = ( - - + ) + ( - + - ) - ( - - + )

= (7xy - 3x2 - 2y2) + (x2 - 2xy - 3y2) - (19xy - 12x2 - 5y2) = 7xy - 3x2 - 2y2 + x2 - 2xy - 3y2 - 19xy + 12x2 + 5y2

= 3x2+x2+12x2 + 7xy2xy19xy + 2y23y2+5y2

= x2 - xy + y2

(ii) m+nm2mn+n2

Solution:

m+nm2mn+n2

= mm2mn+n2+nm2mn+n2

= - + + - +

= +

(iii) (a-2b+5c)(a-b) - (a-b-c)(2a+3c) + (6a+b)(2c-3a-5b)

Solution:

(a - 2b + 5c)(a - b) - (a - b - c)(2a + 3c) + (6a + b)(2c - 3a - 5b)

= ( - - + + - ) - ( + - - - - |) + ( - - + - - )

= a23ab+2b2+5ac5bc - 2a2+ac2ab3bc3c2 + 12ac18a233ab+2bc5b2

= a23ab+2b2+5ac5bc2a2ac+2ab+3bc+3c2+12ac18a233ab+2bc5b2

= a22a218a2 + 2b25b2 + 3c2 + 3ab+2ab33ab + 5acac+12ac + 5bc+3bc+2bc

= a2 + b2 + c2 - ab + ac

(iv) (pq-qr+pr)(pq+qr) - (pr+pq)(p+q-r)

Solution:

(pq - qr + pr)(pq + qr) - (pr + pq)(p + q - r)

= ( - + ) - ( + - + + - )

= p2q2 - q2r2 + p2r2 - p2r - pqr + pr2 - p2q - pq2 + pqr

= + + + + +